Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Reinforced Grounded Action Transformation for Sim-to-Real Transfer (2008.01279v1)

Published 4 Aug 2020 in cs.RO

Abstract: Robots can learn to do complex tasks in simulation, but often, learned behaviors fail to transfer well to the real world due to simulator imperfections (the reality gap). Some existing solutions to this sim-to-real problem, such as Grounded Action Transformation (GAT), use a small amount of real-world experience to minimize the reality gap by grounding the simulator. While very effective in certain scenarios, GAT is not robust on problems that use complex function approximation techniques to model a policy. In this paper, we introduce Reinforced Grounded Action Transformation(RGAT), a new sim-to-real technique that uses Reinforcement Learning (RL) not only to update the target policy in simulation, but also to perform the grounding step itself. This novel formulation allows for end-to-end training during the grounding step, which, compared to GAT, produces a better grounded simulator. Moreover, we show experimentally in several MuJoCo domains that our approach leads to successful transfer for policies modeled using neural networks.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com