Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Safety design concepts for statistical machine learning components toward accordance with functional safety standards (2008.01263v1)

Published 4 Aug 2020 in cs.SE, cs.AI, cs.LG, cs.SY, and eess.SY

Abstract: In recent years, curial incidents and accidents have been reported due to un-intended control caused by misjudgment of statistical machine learning (SML), which include deep learning. The international functional safety standards for Electric/Electronic/Programmable (E/E/P) systems have been widely spread to improve safety. However, most of them do not recom-mended to use SML in safety critical systems so far. In practical the new concepts and methods are urgently required to enable SML to be safely used in safety critical systems. In this paper, we organize five kinds of technical safety concepts (TSCs) for SML components toward accordance with functional safety standards. We discuss not only quantitative evaluation criteria, but also development process based on XAI (eXplainable Artificial Intelligence) and Automotive SPICE to improve explainability and reliability in development phase. Fi-nally, we briefly compare the TSCs in cost and difficulty, and expect to en-courage further discussion in many communities and domain.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.