Papers
Topics
Authors
Recent
2000 character limit reached

A Learned Performance Model for Tensor Processing Units (2008.01040v2)

Published 3 Aug 2020 in cs.PF and cs.LG

Abstract: Accurate hardware performance models are critical to efficient code generation. They can be used by compilers to make heuristic decisions, by superoptimizers as a minimization objective, or by autotuners to find an optimal configuration for a specific program. However, they are difficult to develop because contemporary processors are complex, and the recent proliferation of deep learning accelerators has increased the development burden. We demonstrate a method of learning performance models from a corpus of tensor computation graph programs for Tensor Processing Unit (TPU) instances. We show that our learned model outperforms a heavily-optimized analytical performance model on two tasks -- tile-size selection and operator fusion -- and that it helps an autotuner discover faster programs in a setting where access to TPUs is limited or expensive.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 9 likes about this paper.