Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Learning to Purify Noisy Labels via Meta Soft Label Corrector (2008.00627v1)

Published 3 Aug 2020 in cs.CV

Abstract: Recent deep neural networks (DNNs) can easily overfit to biased training data with noisy labels. Label correction strategy is commonly used to alleviate this issue by designing a method to identity suspected noisy labels and then correct them. Current approaches to correcting corrupted labels usually need certain pre-defined label correction rules or manually preset hyper-parameters. These fixed settings make it hard to apply in practice since the accurate label correction usually related with the concrete problem, training data and the temporal information hidden in dynamic iterations of training process. To address this issue, we propose a meta-learning model which could estimate soft labels through meta-gradient descent step under the guidance of noise-free meta data. By viewing the label correction procedure as a meta-process and using a meta-learner to automatically correct labels, we could adaptively obtain rectified soft labels iteratively according to current training problems without manually preset hyper-parameters. Besides, our method is model-agnostic and we can combine it with any other existing model with ease. Comprehensive experiments substantiate the superiority of our method in both synthetic and real-world problems with noisy labels compared with current SOTA label correction strategies.

Citations (58)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.