Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Learning Agile Locomotion via Adversarial Training (2008.00603v1)

Published 3 Aug 2020 in cs.RO and cs.AI

Abstract: Developing controllers for agile locomotion is a long-standing challenge for legged robots. Reinforcement learning (RL) and Evolution Strategy (ES) hold the promise of automating the design process of such controllers. However, dedicated and careful human effort is required to design training environments to promote agility. In this paper, we present a multi-agent learning system, in which a quadruped robot (protagonist) learns to chase another robot (adversary) while the latter learns to escape. We find that this adversarial training process not only encourages agile behaviors but also effectively alleviates the laborious environment design effort. In contrast to prior works that used only one adversary, we find that training an ensemble of adversaries, each of which specializes in a different escaping strategy, is essential for the protagonist to master agility. Through extensive experiments, we show that the locomotion controller learned with adversarial training significantly outperforms carefully designed baselines.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com