Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

audioLIME: Listenable Explanations Using Source Separation (2008.00582v3)

Published 2 Aug 2020 in cs.SD, cs.IR, cs.LG, and eess.AS

Abstract: Deep neural networks (DNNs) are successfully applied in a wide variety of music information retrieval (MIR) tasks but their predictions are usually not interpretable. We propose audioLIME, a method based on Local Interpretable Model-agnostic Explanations (LIME) extended by a musical definition of locality. The perturbations used in LIME are created by switching on/off components extracted by source separation which makes our explanations listenable. We validate audioLIME on two different music tagging systems and show that it produces sensible explanations in situations where a competing method cannot.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube