Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Joint Object Contour Points and Semantics for Instance Segmentation (2008.00460v3)

Published 2 Aug 2020 in cs.CV

Abstract: The attributes of object contours has great significance for instance segmentation task. However, most of the current popular deep neural networks do not pay much attention to the object edge information. Inspired by the human annotation process when making instance segmentation datasets, in this paper, we propose Mask Point R-CNN aiming at promoting the neural network's attention to the object boundary. Specifically, we innovatively extend the original human keypoint detection task to the contour point detection of any object. Based on this analogy, we present an contour point detection auxiliary task to Mask R-CNN, which can boost the gradient flow between different tasks by effectively using feature fusion strategies and multi-task joint training. As a consequence, the model will be more sensitive to the edges of the object and can capture more geometric features. Quantitatively, the experimental results show that our approach outperforms vanilla Mask R-CNN by 3.8\% on Cityscapes dataset and 0.8\% on COCO dataset.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.