Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Custom Tailored Suite of Random Forests for Prefetcher Adaptation (2008.00176v1)

Published 1 Aug 2020 in cs.AR, cs.LG, and cs.PF

Abstract: To close the gap between memory and processors, and in turn improve performance, there has been an abundance of work in the area of data/instruction prefetcher designs. Prefetchers are deployed in each level of the memory hierarchy, but typically, each prefetcher gets designed without comprehensively accounting for other prefetchers in the system. As a result, these individual prefetcher designs do not always complement each other, and that leads to low average performance gains and/or many negative outliers. In this work, we propose SuitAP (Suite of random forests for Adaptation of Prefetcher system configuration), which is a hardware prefetcher adapter that uses a suite of random forests to determine at runtime which prefetcher should be ON at each memory level, such that they complement each other. Compared to a design with no prefetchers, using SuitAP we improve IPC by 46% on average across traces generated from SPEC2017 suite with 12KB overhead. Moreover, we also reduce negative outliers using SuitAP.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube