Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Byzantine-Resilient Distributed Hypothesis Testing With Time-Varying Network Topology (2008.00164v2)

Published 1 Aug 2020 in eess.SY and cs.SY

Abstract: We study the problem of distributed hypothesis testing over a network of mobile agents with limited communication and sensing ranges to infer the true hypothesis collaboratively. In particular, we consider a scenario where there is an unknown subset of compromised agents that may deliberately share altered information to undermine the team objective. We propose two distributed algorithms where each agent maintains and updates two sets of beliefs (i.e., probability distributions over the hypotheses), namely local and actual beliefs (LB and AB respectively for brevity). In both algorithms, at every time step, each agent shares its AB with other agents within its communication range and makes a local observation to update its LB. Then both algorithms can use the shared information to update ABs under certain conditions. One requires receiving a certain number of shared ABs at each time instant; the other accumulates shared ABs over time and updates after the number of shared ABs exceeds a prescribed threshold. Otherwise, both algorithms rely on the agent's current LB and AB to update the new AB. We prove under mild assumptions that the AB for every non-compromised agent converges almost surely to the true hypothesis, without requiring connectivity in the underlying time-varying network topology. Using a simulation of a team of unmanned aerial vehicles aiming to classify adversarial agents among themselves, we illustrate and compare the proposed algorithms. Finally, we show experimentally that the second algorithm consistently outperforms the first algorithm in terms of the speed of convergence.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube