Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Contiguous Graph Partitioning For Optimal Total Or Bottleneck Communication (2007.16192v4)

Published 31 Jul 2020 in cs.DS

Abstract: Graph partitioning schedules parallel calculations like sparse matrix-vector multiply (SpMV). We consider contiguous partitions, where the $m$ rows (or columns) of a sparse matrix with $N$ nonzeros are split into $K$ parts without reordering. We propose the first near-linear time algorithms for several graph partitioning problems in the contiguous regime. Traditional objectives such as the simple edge cut, hyperedge cut, or hypergraph connectivity minimize the total cost of all parts under a balance constraint. Our total partitioners use $O(Km + N)$ space. They run in $O((Km\log(m) + N)\log(N))$ time, a significant improvement over prior $O(K(m2 + N))$ time algorithms due to Kernighan and Grandjean et. al. Bottleneck partitioning minimizes the maximum cost of any part. We propose a new bottleneck cost which reflects the sum of communication and computation on each part. Our bottleneck partitioners use linear space. The exact algorithm runs in linear time when $K2$ is $O(NC)$ for $C < 1$. Our $(1 + \epsilon)$-approximate algorithm runs in linear time when $K\log(c_{high}/(c_{low}\epsilon))$ is $O(NC)$ for $C < 1$, where $c_{high}$ and $c_{low}$ are upper and lower bounds on the optimal cost. We also propose a simpler $(1 + \epsilon)$-approximate algorithm which runs in a factor of $\log(c_{high}/(c_{low}\epsilon))$ from linear time. We empirically demonstrate that our algorithms efficiently produce high-quality contiguous partitions on a test suite of 42 test matrices. When $K = 8$, our hypergraph connectivity partitioner achieved a speedup of $53\times$ (mean $15.1\times$) over prior algorithms. The mean runtime of our bottleneck partitioner was 5.15 SpMVs.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)