Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

HMCNAS: Neural Architecture Search using Hidden Markov Chains and Bayesian Optimization (2007.16149v1)

Published 31 Jul 2020 in cs.LG, cs.CV, cs.NE, and stat.ML

Abstract: Neural Architecture Search has achieved state-of-the-art performance in a variety of tasks, out-performing human-designed networks. However, many assumptions, that require human definition, related with the problems being solved or the models generated are still needed: final model architectures, number of layers to be sampled, forced operations, small search spaces, which ultimately contributes to having models with higher performances at the cost of inducing bias into the system. In this paper, we propose HMCNAS, which is composed of two novel components: i) a method that leverages information about human-designed models to autonomously generate a complex search space, and ii) an Evolutionary Algorithm with Bayesian Optimization that is capable of generating competitive CNNs from scratch, without relying on human-defined parameters or small search spaces. The experimental results show that the proposed approach results in competitive architectures obtained in a very short time. HMCNAS provides a step towards generalizing NAS, by providing a way to create competitive models, without requiring any human knowledge about the specific task.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.