Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Multi-task learning for natural language processing in the 2020s: where are we going? (2007.16008v1)

Published 22 Jul 2020 in cs.CL and cs.LG

Abstract: Multi-task learning (MTL) significantly pre-dates the deep learning era, and it has seen a resurgence in the past few years as researchers have been applying MTL to deep learning solutions for natural language tasks. While steady MTL research has always been present, there is a growing interest driven by the impressive successes published in the related fields of transfer learning and pre-training, such as BERT, and the release of new challenge problems, such as GLUE and the NLP Decathlon (decaNLP). These efforts place more focus on how weights are shared across networks, evaluate the re-usability of network components and identify use cases where MTL can significantly outperform single-task solutions. This paper strives to provide a comprehensive survey of the numerous recent MTL contributions to the field of natural language processing and provide a forum to focus efforts on the hardest unsolved problems in the next decade. While novel models that improve performance on NLP benchmarks are continually produced, lasting MTL challenges remain unsolved which could hold the key to better language understanding, knowledge discovery and natural language interfaces.

Citations (74)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube