Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Functional Model for Structure Learning and Parameter Estimation in Continuous Time Bayesian Network: An Application in Identifying Patterns of Multiple Chronic Conditions (2007.15847v2)

Published 31 Jul 2020 in cs.LG, cs.AI, and stat.ML

Abstract: Bayesian networks are powerful statistical models to study the probabilistic relationships among set random variables with major applications in disease modeling and prediction. Here, we propose a continuous time Bayesian network with conditional dependencies, represented as Poisson regression, to model the impact of exogenous variables on the conditional dependencies of the network. We also propose an adaptive regularization method with an intuitive early stopping feature based on density based clustering for efficient learning of the structure and parameters of the proposed network. Using a dataset of patients with multiple chronic conditions extracted from electronic health records of the Department of Veterans Affairs we compare the performance of the proposed approach with some of the existing methods in the literature for both short-term (one-year ahead) and long-term (multi-year ahead) predictions. The proposed approach provides a sparse intuitive representation of the complex functional relationships between multiple chronic conditions. It also provides the capability of analyzing multiple disease trajectories over time given any combination of prior conditions.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.