Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Representation Learning of Graphs Using Graph Convolutional Multilayer Networks Based on Motifs (2007.15838v1)

Published 31 Jul 2020 in cs.SI and cs.LG

Abstract: The graph structure is a commonly used data storage mode, and it turns out that the low-dimensional embedded representation of nodes in the graph is extremely useful in various typical tasks, such as node classification, link prediction , etc. However, most of the existing approaches start from the binary relationship (i.e., edges) in the graph and have not leveraged the higher order local structure (i.e., motifs) of the graph. Here, we propose mGCMN -- a novel framework which utilizes node feature information and the higher order local structure of the graph to effectively generate node embeddings for previously unseen data. Through research we have found that different types of networks have different key motifs. And the advantages of our method over the baseline methods have been demonstrated in a large number of experiments on citation network and social network datasets. At the same time, a positive correlation between increase of the classification accuracy and the clustering coefficient is revealed. It is believed that using high order structural information can truly manifest the potential of the network, which will greatly improve the learning efficiency of the graph neural network and promote a brand-new learning mode establishment.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.