Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Language Modelling for Source Code with Transformer-XL (2007.15813v1)

Published 31 Jul 2020 in cs.LG, cs.CL, and cs.SE

Abstract: It has been found that software, like natural language texts, exhibits "naturalness", which can be captured by statistical LLMs. In recent years, neural LLMs have been proposed to represent the naturalness of software through deep learning. In this paper, we conduct an experimental evaluation of state-of-the-art neural LLMs for source code, including RNN-based models and Transformer-XL based models. Through experiments on a large-scale Python code corpus, we find that the Transformer-XL model outperforms RNN-based models (including LSTM and GRU models) in capturing the naturalness of software, with far less computational cost.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.