Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Second-Order Converse Bound for the Multiple-Access Channel via Wringing Dependence (2007.15664v2)

Published 30 Jul 2020 in cs.IT and math.IT

Abstract: A new converse bound is presented for the two-user multiple-access channel under the average probability of error constraint. This bound shows that for most channels of interest, the second-order coding rate -- that is, the difference between the best achievable rates and the asymptotic capacity region as a function of blocklength $n$ with fixed probability of error -- is $O(1/\sqrt{n})$ bits per channel use. The principal tool behind this converse proof is a new measure of dependence between two random variables called wringing dependence, as it is inspired by Ahlswede's wringing technique. The $O(1/\sqrt{n})$ gap is shown to hold for any channel satisfying certain regularity conditions, which includes all discrete-memoryless channels and the Gaussian multiple-access channel. Exact upper bounds as a function of the probability of error are proved for the coefficient in the $O(1/\sqrt{n})$ term, although for most channels they do not match existing achievable bounds.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.