Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Bilevel Continual Learning (2007.15553v1)

Published 30 Jul 2020 in cs.LG and stat.ML

Abstract: Continual learning aims to learn continuously from a stream of tasks and data in an online-learning fashion, being capable of exploiting what was learned previously to improve current and future tasks while still being able to perform well on the previous tasks. One common limitation of many existing continual learning methods is that they often train a model directly on all available training data without validation due to the nature of continual learning, thus suffering poor generalization at test time. In this work, we present a novel framework of continual learning named "Bilevel Continual Learning" (BCL) by unifying a {\it bilevel optimization} objective and a {\it dual memory management} strategy comprising both episodic memory and generalization memory to achieve effective knowledge transfer to future tasks and alleviate catastrophic forgetting on old tasks simultaneously. Our extensive experiments on continual learning benchmarks demonstrate the efficacy of the proposed BCL compared to many state-of-the-art methods. Our implementation is available at https://github.com/phquang/bilevel-continual-learning.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.