Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Black-box Adversarial Sample Generation Based on Differential Evolution (2007.15310v1)

Published 30 Jul 2020 in cs.LG, cs.CR, cs.CV, and stat.ML

Abstract: Deep Neural Networks (DNNs) are being used in various daily tasks such as object detection, speech processing, and machine translation. However, it is known that DNNs suffer from robustness problems -- perturbed inputs called adversarial samples leading to misbehaviors of DNNs. In this paper, we propose a black-box technique called Black-box Momentum Iterative Fast Gradient Sign Method (BMI-FGSM) to test the robustness of DNN models. The technique does not require any knowledge of the structure or weights of the target DNN. Compared to existing white-box testing techniques that require accessing model internal information such as gradients, our technique approximates gradients through Differential Evolution and uses approximated gradients to construct adversarial samples. Experimental results show that our technique can achieve 100% success in generating adversarial samples to trigger misclassification, and over 95% success in generating samples to trigger misclassification to a specific target output label. It also demonstrates better perturbation distance and better transferability. Compared to the state-of-the-art black-box technique, our technique is more efficient. Furthermore, we conduct testing on the commercial Aliyun API and successfully trigger its misbehavior within a limited number of queries, demonstrating the feasibility of real-world black-box attack.

Citations (33)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.