Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Improving probability selecting based weights for Satisfiability Problem (2007.15185v1)

Published 30 Jul 2020 in cs.AI

Abstract: The Boolean Satisfiability problem (SAT) is important on artificial intelligence community and the impact of its solving on complex problems. Recently, great breakthroughs have been made respectively on stochastic local search (SLS) algorithms for uniform random k-SAT resulting in several state-of-the-art SLS algorithms Score2SAT, YalSAT, ProbSAT, CScoreSAT and on a hybrid algorithm for hard random SAT (HRS) resulting in one state-of-the-art hybrid algorithm SparrowToRiss. However, there is no an algorithm which can effectively solve both uniform random k-SAT and HRS. In this paper, we present a new SLS algorithm named SelectNTS for uniform random k-SAT and HRS. SelectNTS is an improved probability selecting based local search algorithm for SAT problem. The core of SelectNTS relies on new clause and variable selection heuristics. The new clause selection heuristic uses a new clause weighting scheme and a biased random walk. The new variable selection heuristic uses a probability selecting strategy with the variation of CC strategy based on a new variable weighting scheme. Extensive experimental results on the well-known random benchmarks instances from the SAT Competitions in 2017 and 2018, and on randomly generated problems, show that our algorithm outperforms state-of-the-art random SAT algorithms, and our SelectNTS can effectively solve both uniform random k-SAT and HRS.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.