Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

What My Motion tells me about Your Pose: A Self-Supervised Monocular 3D Vehicle Detector (2007.14812v2)

Published 29 Jul 2020 in cs.CV

Abstract: The estimation of the orientation of an observed vehicle relative to an Autonomous Vehicle (AV) from monocular camera data is an important building block in estimating its 6 DoF pose. Current Deep Learning based solutions for placing a 3D bounding box around this observed vehicle are data hungry and do not generalize well. In this paper, we demonstrate the use of monocular visual odometry for the self-supervised fine-tuning of a model for orientation estimation pre-trained on a reference domain. Specifically, while transitioning from a virtual dataset (vKITTI) to nuScenes, we recover up to 70% of the performance of a fully supervised method. We subsequently demonstrate an optimization-based monocular 3D bounding box detector built on top of the self-supervised vehicle orientation estimator without the requirement of expensive labeled data. This allows 3D vehicle detection algorithms to be self-trained from large amounts of monocular camera data from existing commercial vehicle fleets.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.