Computing Weighted Subset Transversals in $H$-Free Graphs (2007.14514v2)
Abstract: For the Odd Cycle Transversal problem, the task is to find a small set $S$ of vertices in a graph that intersects every cycle of odd length. The Subset Odd Cycle Transversal problem requires S to intersect only those odd cycles that include a vertex of a distinguished vertex subset $T$. If we are given weights for the vertices, we ask instead that $S$ has small weight: this is the problem Weighted Subset Odd Cycle Transversal. We prove an almost-complete complexity dichotomy for Weighted Subset Odd Cycle Transversal for graphs that do not contain a graph $H$ as an induced subgraph. Our general approach can also be used for Weighted Subset Feedback Vertex Set, which enables us to generalize a recent result of Papadopoulos and Tzimas.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.