Papers
Topics
Authors
Recent
2000 character limit reached

Class maps for visualizing classification results (2007.14495v3)

Published 28 Jul 2020 in stat.ML, cs.LG, stat.CO, and stat.ME

Abstract: Classification is a major tool of statistics and machine learning. A classification method first processes a training set of objects with given classes (labels), with the goal of afterward assigning new objects to one of these classes. When running the resulting prediction method on the training data or on test data, it can happen that an object is predicted to lie in a class that differs from its given label. This is sometimes called label bias, and raises the question whether the object was mislabeled. The proposed class map reflects the probability that an object belongs to an alternative class, how far it is from the other objects in its given class, and whether some objects lie far from all classes. The goal is to visualize aspects of the classification results to obtain insight in the data. The display is constructed for discriminant analysis, the k-nearest neighbor classifier, support vector machines, logistic regression, and coupling pairwise classifications. It is illustrated on several benchmark datasets, including some about images and texts.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.