Few-Shot Keyword Spotting With Prototypical Networks (2007.14463v1)
Abstract: Recognizing a particular command or a keyword, keyword spotting has been widely used in many voice interfaces such as Amazon's Alexa and Google Home. In order to recognize a set of keywords, most of the recent deep learning based approaches use a neural network trained with a large number of samples to identify certain pre-defined keywords. This restricts the system from recognizing new, user-defined keywords. Therefore, we first formulate this problem as a few-shot keyword spotting and approach it using metric learning. To enable this research, we also synthesize and publish a Few-shot Google Speech Commands dataset. We then propose a solution to the few-shot keyword spotting problem using temporal and dilated convolutions on prototypical networks. Our comparative experimental results demonstrate keyword spotting of new keywords using just a small number of samples.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.