Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 89 tok/s
Gemini 3.0 Pro 56 tok/s
Gemini 2.5 Flash 158 tok/s Pro
Kimi K2 198 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Injective hulls of various graph classes (2007.14377v1)

Published 28 Jul 2020 in cs.DM and math.CO

Abstract: A graph is Helly if its disks satisfy the Helly property, i.e., every family of pairwise intersecting disks in G has a common intersection. It is known that for every graph G, there exists a unique smallest Helly graph H(G) into which G isometrically embeds; H(G) is called the injective hull of G. Motivated by this, we investigate the structural properties of the injective hulls of various graph classes. We say that a class of graphs $\mathcal{C}$ is closed under Hellification if $G \in \mathcal{C}$ implies $H(G) \in \mathcal{C}$. We identify several graph classes that are closed under Hellification. We show that permutation graphs are not closed under Hellification, but chordal graphs, square-chordal graphs, and distance-hereditary graphs are. Graphs that have an efficiently computable injective hull are of particular interest. A linear-time algorithm to construct the injective hull of any distance-hereditary graph is provided and we show that the injective hull of several graphs from some other well-known classes of graphs are impossible to compute in subexponential time. In particular, there are split graphs, cocomparability graphs, bipartite graphs G such that H(G) contains $\Omega(a{n})$ vertices, where $n=|V(G)|$ and $a>1$.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.