Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Discrepancy Minimization in Domain Generalization with Generative Nearest Neighbors (2007.14284v1)

Published 28 Jul 2020 in cs.CV and cs.LG

Abstract: Domain generalization (DG) deals with the problem of domain shift where a machine learning model trained on multiple-source domains fail to generalize well on a target domain with different statistics. Multiple approaches have been proposed to solve the problem of domain generalization by learning domain invariant representations across the source domains that fail to guarantee generalization on the shifted target domain. We propose a Generative Nearest Neighbor based Discrepancy Minimization (GNNDM) method which provides a theoretical guarantee that is upper bounded by the error in the labeling process of the target. We employ a Domain Discrepancy Minimization Network (DDMN) that learns domain agnostic features to produce a single source domain while preserving the class labels of the data points. Features extracted from this source domain are learned using a generative model whose latent space is used as a sampler to retrieve the nearest neighbors for the target data points. The proposed method does not require access to the domain labels (a more realistic scenario) as opposed to the existing approaches. Empirically, we show the efficacy of our method on two datasets: PACS and VLCS. Through extensive experimentation, we demonstrate the effectiveness of the proposed method that outperforms several state-of-the-art DG methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.