Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Bayesian Multi-Scale Neural Network for Crowd Counting (2007.14245v4)

Published 11 Jul 2020 in cs.CV, cs.LG, and stat.ML

Abstract: Crowd counting is a challenging yet critical task in computer vision with applications ranging from public safety to urban planning. Recent advances using Convolutional Neural Networks (CNNs) that estimate density maps have shown significant success. However, accurately counting individuals in highly congested scenes remains an open problem due to severe occlusions, scale variations, and perspective distortions, where people appear at drastically different sizes across the image. In this work, we propose a novel deep learning architecture that effectively addresses these challenges. Our network integrates a ResNet-based feature extractor for capturing rich hierarchical representations, followed by a downsampling block employing dilated convolutions to preserve spatial resolution while expanding the receptive field. An upsampling block using transposed convolutions reconstructs the high-resolution density map. Central to our architecture is a novel Perspective-aware Aggregation Module (PAM) designed to enhance robustness to scale and perspective variations by adaptively aggregating multi-scale contextual information. We detail the training procedure, including the loss functions and optimization strategies used. Our method is evaluated on three widely used benchmark datasets using Mean Absolute Error (MAE) and Mean Squared Error (MSE) as evaluation metrics. Experimental results demonstrate that our model achieves superior performance compared to existing state-of-the-art methods. Additionally, we incorporate principled Bayesian inference techniques to provide uncertainty estimates along with the crowd count predictions, offering a measure of confidence in the model's outputs.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)