Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 133 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Hierarchical Control of Multi-Agent Systems using Online Reinforcement Learning (2007.14186v1)

Published 28 Jul 2020 in eess.SY, cs.SY, and math.DS

Abstract: We propose a new reinforcement learning based approach to designing hierarchical linear quadratic regulator (LQR) controllers for heterogeneous linear multi-agent systems with unknown state-space models and separated control objectives. The separation arises from grouping the agents into multiple non-overlapping groups, and defining the control goal as two distinct objectives. The first objective aims to minimize a group-wise block-decentralized LQR function that models group-level mission. The second objective, on the other hand, tries to minimize an LQR function between the average states (centroids) of the groups. Exploiting this separation, we redefine the weighting matrices of the LQR functions in a way that they allow us to decouple their respective algebraic Riccati equations. Thereafter, we develop a reinforcement learning strategy that uses online measurements of the agent states and the average states to learn the respective controllers based on the approximate Riccati equations. Since the first controller is block-decentralized and, therefore, can be learned in parallel, while the second controller is reduced-dimensional due to averaging, the overall design enjoys a significantly reduced learning time compared to centralized reinforcement learning.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.