Nonconforming finite element Stokes complexes in three dimensions (2007.14068v3)
Abstract: Two nonconforming finite element Stokes complexes starting from the conforming Lagrange element and ending with the nonconforming $P_1$-$P_0$ element for the Stokes equation in three dimensions are constructed. And commutative diagrams are also shown by combining nonconforming finite element Stokes complexes and interpolation operators. The lower order $\boldsymbol H(\textrm{grad}\textrm{curl})$-nonconforming finite element only has $14$ degrees of freedom, whose basis functions are explicitly given in terms of the barycentric coordinates. The $\boldsymbol H(\textrm{grad}\textrm{curl})$-nonconforming elements are applied to solve the quad-curl problem, and optimal convergence is derived. By the nonconforming finite element Stokes complexes, the mixed finite element methods of the quad-curl problem are decoupled into two mixed methods of the Maxwell equation and the nonconforming $P_1$-$P_0$ element method for the Stokes equation, based on which a fast solver is discussed. Numerical results are provided to verify the theoretical convergence rates.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.