Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Derivation of Information-Theoretically Optimal Adversarial Attacks with Applications to Robust Machine Learning (2007.14042v1)

Published 28 Jul 2020 in cs.LG, cs.IT, math.IT, and stat.ML

Abstract: We consider the theoretical problem of designing an optimal adversarial attack on a decision system that maximally degrades the achievable performance of the system as measured by the mutual information between the degraded signal and the label of interest. This problem is motivated by the existence of adversarial examples for machine learning classifiers. By adopting an information theoretic perspective, we seek to identify conditions under which adversarial vulnerability is unavoidable i.e. even optimally designed classifiers will be vulnerable to small adversarial perturbations. We present derivations of the optimal adversarial attacks for discrete and continuous signals of interest, i.e., finding the optimal perturbation distributions to minimize the mutual information between the degraded signal and a signal following a continuous or discrete distribution. In addition, we show that it is much harder to achieve adversarial attacks for minimizing mutual information when multiple redundant copies of the input signal are available. This provides additional support to the recently proposed ``feature compression" hypothesis as an explanation for the adversarial vulnerability of deep learning classifiers. We also report on results from computational experiments to illustrate our theoretical results.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.