Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Quantum-soft QUBO Suppression for Accurate Object Detection (2007.13992v1)

Published 28 Jul 2020 in cs.CV

Abstract: Non-maximum suppression (NMS) has been adopted by default for removing redundant object detections for decades. It eliminates false positives by only keeping the image M with highest detection score and images whose overlap ratio with M is less than a predefined threshold. However, this greedy algorithm may not work well for object detection under occlusion scenario where true positives with lower detection scores are possibly suppressed. In this paper, we first map the task of removing redundant detections into Quadratic Unconstrained Binary Optimization (QUBO) framework that consists of detection score from each bounding box and overlap ratio between pair of bounding boxes. Next, we solve the QUBO problem using the proposed Quantum-soft QUBO Suppression (QSQS) algorithm for fast and accurate detection by exploiting quantum computing advantages. Experiments indicate that QSQS improves mean average precision from 74.20% to 75.11% for PASCAL VOC 2007. It consistently outperforms NMS and soft-NMS for Reasonable subset of benchmark pedestrian detection CityPersons.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)