Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 418 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning discrete distributions: user vs item-level privacy (2007.13660v3)

Published 27 Jul 2020 in cs.LG, cs.CR, cs.DS, cs.IT, math.IT, and stat.ML

Abstract: Much of the literature on differential privacy focuses on item-level privacy, where loosely speaking, the goal is to provide privacy per item or training example. However, recently many practical applications such as federated learning require preserving privacy for all items of a single user, which is much harder to achieve. Therefore understanding the theoretical limit of user-level privacy becomes crucial. We study the fundamental problem of learning discrete distributions over $k$ symbols with user-level differential privacy. If each user has $m$ samples, we show that straightforward applications of Laplace or Gaussian mechanisms require the number of users to be $\mathcal{O}(k/(m\alpha2) + k/\epsilon\alpha)$ to achieve an $\ell_1$ distance of $\alpha$ between the true and estimated distributions, with the privacy-induced penalty $k/\epsilon\alpha$ independent of the number of samples per user $m$. Moreover, we show that any mechanism that only operates on the final aggregate counts should require a user complexity of the same order. We then propose a mechanism such that the number of users scales as $\tilde{\mathcal{O}}(k/(m\alpha2) + k/\sqrt{m}\epsilon\alpha)$ and hence the privacy penalty is $\tilde{\Theta}(\sqrt{m})$ times smaller compared to the standard mechanisms in certain settings of interest. We further show that the proposed mechanism is nearly-optimal under certain regimes. We also propose general techniques for obtaining lower bounds on restricted differentially private estimators and a lower bound on the total variation between binomial distributions, both of which might be of independent interest.

Citations (51)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.