Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Orpheus: A New Deep Learning Framework for Easy Deployment and Evaluation of Edge Inference (2007.13648v2)

Published 24 Jul 2020 in cs.DC, cs.CV, cs.LG, cs.PF, and stat.ML

Abstract: Optimising deep learning inference across edge devices and optimisation targets such as inference time, memory footprint and power consumption is a key challenge due to the ubiquity of neural networks. Today, production deep learning frameworks provide useful abstractions to aid machine learning engineers and systems researchers. However, in exchange they can suffer from compatibility challenges (especially on constrained platforms), inaccessible code complexity, or design choices that otherwise limit research from a systems perspective. This paper presents Orpheus, a new deep learning framework for easy prototyping, deployment and evaluation of inference optimisations. Orpheus features a small codebase, minimal dependencies, and a simple process for integrating other third party systems. We present some preliminary evaluation results.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.