Papers
Topics
Authors
Recent
2000 character limit reached

Second Order PAC-Bayesian Bounds for the Weighted Majority Vote (2007.13532v2)

Published 1 Jul 2020 in cs.LG and stat.ML

Abstract: We present a novel analysis of the expected risk of weighted majority vote in multiclass classification. The analysis takes correlation of predictions by ensemble members into account and provides a bound that is amenable to efficient minimization, which yields improved weighting for the majority vote. We also provide a specialized version of our bound for binary classification, which allows to exploit additional unlabeled data for tighter risk estimation. In experiments, we apply the bound to improve weighting of trees in random forests and show that, in contrast to the commonly used first order bound, minimization of the new bound typically does not lead to degradation of the test error of the ensemble.

Citations (39)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.