Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Learning "What-if" Explanations for Sequential Decision-Making (2007.13531v3)

Published 2 Jul 2020 in cs.LG, cs.AI, and stat.ML

Abstract: Building interpretable parameterizations of real-world decision-making on the basis of demonstrated behavior -- i.e. trajectories of observations and actions made by an expert maximizing some unknown reward function -- is essential for introspecting and auditing policies in different institutions. In this paper, we propose learning explanations of expert decisions by modeling their reward function in terms of preferences with respect to "what if" outcomes: Given the current history of observations, what would happen if we took a particular action? To learn these cost-benefit tradeoffs associated with the expert's actions, we integrate counterfactual reasoning into batch inverse reinforcement learning. This offers a principled way of defining reward functions and explaining expert behavior, and also satisfies the constraints of real-world decision-making -- where active experimentation is often impossible (e.g. in healthcare). Additionally, by estimating the effects of different actions, counterfactuals readily tackle the off-policy nature of policy evaluation in the batch setting, and can naturally accommodate settings where the expert policies depend on histories of observations rather than just current states. Through illustrative experiments in both real and simulated medical environments, we highlight the effectiveness of our batch, counterfactual inverse reinforcement learning approach in recovering accurate and interpretable descriptions of behavior.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.