Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Two-Level Residual Distillation based Triple Network for Incremental Object Detection (2007.13428v1)

Published 27 Jul 2020 in cs.CV

Abstract: Modern object detection methods based on convolutional neural network suffer from severe catastrophic forgetting in learning new classes without original data. Due to time consumption, storage burden and privacy of old data, it is inadvisable to train the model from scratch with both old and new data when new object classes emerge after the model trained. In this paper, we propose a novel incremental object detector based on Faster R-CNN to continuously learn from new object classes without using old data. It is a triple network where an old model and a residual model as assistants for helping the incremental model learning on new classes without forgetting the previous learned knowledge. To better maintain the discrimination of features between old and new classes, the residual model is jointly trained on new classes in the incremental learning procedure. In addition, a corresponding distillation scheme is designed to guide the training process, which consists of a two-level residual distillation loss and a joint classification distillation loss. Extensive experiments on VOC2007 and COCO are conducted, and the results demonstrate that the proposed method can effectively learn to incrementally detect objects of new classes, and the problem of catastrophic forgetting is mitigated in this context.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.