Best low-rank approximations and Kolmogorov n-widths (2007.13196v3)
Abstract: We relate the problem of best low-rank approximation in the spectral norm for a matrix $A$ to Kolmogorov $n$-widths and corresponding optimal spaces. We characterize all the optimal spaces for the image of the Euclidean unit ball under $A$ and we show that any orthonormal basis in an $n$-dimensional optimal space generates a best rank-$n$ approximation to $A$. We also present a simple and explicit construction to obtain a sequence of optimal $n$-dimensional spaces once an initial optimal space is known. This results in a variety of solutions to the best low-rank approximation problem and provides alternatives to the truncated singular value decomposition. This variety can be exploited to obtain best low-rank approximations with problem-oriented properties.
- Michael S. Floater (8 papers)
- Carla Manni (15 papers)
- Espen Sande (14 papers)
- Hendrik Speleers (21 papers)