Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 83 tok/s
Gemini 2.5 Flash 150 tok/s Pro
Gemini 2.5 Pro 48 tok/s Pro
Kimi K2 190 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Reed at SemEval-2020 Task 9: Fine-Tuning and Bag-of-Words Approaches to Code-Mixed Sentiment Analysis (2007.13061v2)

Published 26 Jul 2020 in cs.CL

Abstract: We explore the task of sentiment analysis on Hinglish (code-mixed Hindi-English) tweets as participants of Task 9 of the SemEval-2020 competition, known as the SentiMix task. We had two main approaches: 1) applying transfer learning by fine-tuning pre-trained BERT models and 2) training feedforward neural networks on bag-of-words representations. During the evaluation phase of the competition, we obtained an F-score of 71.3% with our best model, which placed $4{th}$ out of 62 entries in the official system rankings.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.