Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

MRGAN: Multi-Rooted 3D Shape Generation with Unsupervised Part Disentanglement (2007.12944v1)

Published 25 Jul 2020 in cs.CV and cs.LG

Abstract: We present MRGAN, a multi-rooted adversarial network which generates part-disentangled 3D point-cloud shapes without part-based shape supervision. The network fuses multiple branches of tree-structured graph convolution layers which produce point clouds, with learnable constant inputs at the tree roots. Each branch learns to grow a different shape part, offering control over the shape generation at the part level. Our network encourages disentangled generation of semantic parts via two key ingredients: a root-mixing training strategy which helps decorrelate the different branches to facilitate disentanglement, and a set of loss terms designed with part disentanglement and shape semantics in mind. Of these, a novel convexity loss incentivizes the generation of parts that are more convex, as semantic parts tend to be. In addition, a root-dropping loss further ensures that each root seeds a single part, preventing the degeneration or over-growth of the point-producing branches. We evaluate the performance of our network on a number of 3D shape classes, and offer qualitative and quantitative comparisons to previous works and baseline approaches. We demonstrate the controllability offered by our part-disentangled generation through two applications for shape modeling: part mixing and individual part variation, without receiving segmented shapes as input.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.