Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Few-Shot Bearing Fault Diagnosis Based on Model-Agnostic Meta-Learning (2007.12851v4)

Published 25 Jul 2020 in cs.LG and stat.ML

Abstract: The rapid development of artificial intelligence and deep learning has provided many opportunities to further enhance the safety, stability, and accuracy of industrial Cyber-Physical Systems (CPS). As indispensable components to many mission-critical CPS assets and equipment, mechanical bearings need to be monitored to identify any trace of abnormal conditions. Most of the data-driven approaches applied to bearing fault diagnosis up-to-date are trained using a large amount of fault data collected a priori. In many practical applications, however, it can be unsafe and time-consuming to collect sufficient data samples for each fault category, making it challenging to train a robust classifier. In this paper, we propose a few-shot learning framework for bearing fault diagnosis based on model-agnostic meta-learning (MAML), which targets for training an effective fault classifier using limited data. In addition, it can leverage the training data and learn to identify new fault scenarios more efficiently. Case studies on the generalization to new artificial faults show that the proposed framework achieves an overall accuracy up to 25% higher than a Siamese network-based benchmark study. Finally, the robustness and the generalization capability of the proposed framework are further validated by applying it to identify real bearing damages using data from artificial damages, which compares favorably against 6 state-of-the-art few-shot learning algorithms using consistent test environments.

Citations (63)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.