Support of Closed Walks and Second Eigenvalue Multiplicity of the Normalized Adjacency Matrix (2007.12819v3)
Abstract: We show that the multiplicity of the second normalized adjacency matrix eigenvalue of any connected graph of maximum degree $\Delta$ is bounded by $O(n \Delta{7/5}/\log{1/5-o(1)}n)$ for any $\Delta$, and by $O(n\log{1/2}d/\log{1/4-o(1)}n)$ for simple $d$-regular graphs when $d\ge \log{1/4}n$. In fact, the same bounds hold for the number of eigenvalues in any interval of width $\lambda_2/\log_\Delta{1-o(1)}n$ containing the second eigenvalue $\lambda_2$. The main ingredient in the proof is a polynomial (in $k$) lower bound on the typical support of a closed random walk of length $2k$ in any connected graph, which in turn relies on new lower bounds for the entries of the Perron eigenvector of submatrices of the normalized adjacency matrix.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.