Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Support of Closed Walks and Second Eigenvalue Multiplicity of the Normalized Adjacency Matrix (2007.12819v3)

Published 25 Jul 2020 in math.CO, cs.DM, math.MG, math.PR, and math.SP

Abstract: We show that the multiplicity of the second normalized adjacency matrix eigenvalue of any connected graph of maximum degree $\Delta$ is bounded by $O(n \Delta{7/5}/\log{1/5-o(1)}n)$ for any $\Delta$, and by $O(n\log{1/2}d/\log{1/4-o(1)}n)$ for simple $d$-regular graphs when $d\ge \log{1/4}n$. In fact, the same bounds hold for the number of eigenvalues in any interval of width $\lambda_2/\log_\Delta{1-o(1)}n$ containing the second eigenvalue $\lambda_2$. The main ingredient in the proof is a polynomial (in $k$) lower bound on the typical support of a closed random walk of length $2k$ in any connected graph, which in turn relies on new lower bounds for the entries of the Perron eigenvector of submatrices of the normalized adjacency matrix.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.