Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A new analytical framework for the convergence of inexact two-grid methods (2007.12754v2)

Published 24 Jul 2020 in math.NA and cs.NA

Abstract: Two-grid methods with exact solution of the Galerkin coarse-grid system have been well studied by the multigrid community: an elegant identity has been established to characterize the convergence factor of exact two-grid methods. In practice, however, it is often too costly to solve the Galerkin coarse-grid system exactly, especially when its size is large. Instead, without essential loss of convergence speed, one may solve the coarse-grid system approximately. In this paper, we develop a new framework for analyzing the convergence of inexact two-grid methods: two-sided bounds for the energy norm of the error propagation matrix of inexact two-grid methods are presented. In the framework, a restricted smoother involved in the identity for exact two-grid convergence is used to measure how far the actual coarse-grid matrix deviates from the Galerkin one. As an application, we establish a unified convergence theory for multigrid methods.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.