Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Detecting malicious PDF using CNN (2007.12729v2)

Published 24 Jul 2020 in cs.CR and cs.LG

Abstract: Malicious PDF files represent one of the biggest threats to computer security. To detect them, significant research has been done using handwritten signatures or machine learning based on manual feature extraction. Those approaches are both time-consuming, require significant prior knowledge and the list of features has to be updated with each newly discovered vulnerability. In this work, we propose a novel algorithm that uses an ensemble of Convolutional Neural Network (CNN) on the byte level of the file, without any handcrafted features. We show, using a data set of 90000 files downloadable online, that our approach maintains a high detection rate (94%) of PDF malware and even detects new malicious files, still undetected by most antiviruses. Using automatically generated features from our CNN network, and applying a clustering algorithm, we also obtain high similarity between the antiviruses' labels and the resulting clusters.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.