Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

MPC-enabled Privacy-Preserving Neural Network Training against Malicious Attack (2007.12557v3)

Published 24 Jul 2020 in cs.CR, cs.DC, and cs.LG

Abstract: The application of secure multiparty computation (MPC) in machine learning, especially privacy-preserving neural network training, has attracted tremendous attention from the research community in recent years. MPC enables several data owners to jointly train a neural network while preserving the data privacy of each participant. However, most of the previous works focus on semi-honest threat model that cannot withstand fraudulent messages sent by malicious participants. In this paper, we propose an approach for constructing efficient $n$-party protocols for secure neural network training that can provide security for all honest participants even when a majority of the parties are malicious. Compared to the other designs that provide semi-honest security in a dishonest majority setting, our actively secure neural network training incurs affordable efficiency overheads of around 2X and 2.7X in LAN and WAN settings, respectively. Besides, we propose a scheme to allow additive shares defined over an integer ring $\mathbb{Z}_N$ to be securely converted to additive shares over a finite field $\mathbb{Z}_Q$, which may be of independent interest. Such conversion scheme is essential in securely and correctly converting shared Beaver triples defined over an integer ring generated in the preprocessing phase to triples defined over a field to be used in the calculation in the online phase.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube