Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Study of Different Deep Learning Approach with Explainable AI for Screening Patients with COVID-19 Symptoms: Using CT Scan and Chest X-ray Image Dataset (2007.12525v1)

Published 24 Jul 2020 in eess.IV, cs.CV, and cs.LG

Abstract: The outbreak of COVID-19 disease caused more than 100,000 deaths so far in the USA alone. It is necessary to conduct an initial screening of patients with the symptoms of COVID-19 disease to control the spread of the disease. However, it is becoming laborious to conduct the tests with the available testing kits due to the growing number of patients. Some studies proposed CT scan or chest X-ray images as an alternative solution. Therefore, it is essential to use every available resource, instead of either a CT scan or chest X-ray to conduct a large number of tests simultaneously. As a result, this study aims to develop a deep learning-based model that can detect COVID-19 patients with better accuracy both on CT scan and chest X-ray image dataset. In this work, eight different deep learning approaches such as VGG16, InceptionResNetV2, ResNet50, DenseNet201, VGG19, MobilenetV2, NasNetMobile, and ResNet15V2 have been tested on two dataset-one dataset includes 400 CT scan images, and another dataset includes 400 chest X-ray images studied. Besides, Local Interpretable Model-agnostic Explanations (LIME) is used to explain the model's interpretability. Using LIME, test results demonstrate that it is conceivable to interpret top features that should have worked to build a trust AI framework to distinguish between patients with COVID-19 symptoms with other patients.

Citations (32)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.