Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Using a geometric lens to find k disjoint shortest paths (2007.12502v2)

Published 24 Jul 2020 in math.CO and cs.DS

Abstract: Given an undirected $n$-vertex graph and $k$ pairs of terminal vertices $(s_1,t_1), \ldots, (s_k,t_k)$, the $k$-Disjoint Shortest Paths ($k$-DSP)-problem asks whether there are $k$ pairwise vertex-disjoint paths $P_1,\ldots, P_k$ such that $P_i$ is a shortest $s_i$-$t_i$-path for each $i \in [k]$. Recently, Lochet [SODA 2021] provided an algorithm that solves $k$-DSP in $n{O(k{5k})}$ time, answering a 20-year old question about the computational complexity of $k$-DSP for constant $k$. On the one hand, we present an improved $n{O(k!k)}$-time algorithm based on a novel geometric view on this problem. For the special case $k=2$ on $m$-edge graphs, we show that the running time can be further reduced to $O(nm)$ by small modifications of the algorithm and a refined analysis. On the other hand, we show that $k$-DSP is W[1]-hard with respect to $k$, showing that the dependency of the degree of the polynomial running time on the parameter $k$ is presumably unavoidable.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.