Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Using a geometric lens to find k disjoint shortest paths (2007.12502v2)

Published 24 Jul 2020 in math.CO and cs.DS

Abstract: Given an undirected $n$-vertex graph and $k$ pairs of terminal vertices $(s_1,t_1), \ldots, (s_k,t_k)$, the $k$-Disjoint Shortest Paths ($k$-DSP)-problem asks whether there are $k$ pairwise vertex-disjoint paths $P_1,\ldots, P_k$ such that $P_i$ is a shortest $s_i$-$t_i$-path for each $i \in [k]$. Recently, Lochet [SODA 2021] provided an algorithm that solves $k$-DSP in $n{O(k{5k})}$ time, answering a 20-year old question about the computational complexity of $k$-DSP for constant $k$. On the one hand, we present an improved $n{O(k!k)}$-time algorithm based on a novel geometric view on this problem. For the special case $k=2$ on $m$-edge graphs, we show that the running time can be further reduced to $O(nm)$ by small modifications of the algorithm and a refined analysis. On the other hand, we show that $k$-DSP is W[1]-hard with respect to $k$, showing that the dependency of the degree of the polynomial running time on the parameter $k$ is presumably unavoidable.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.