Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

On the Number of Affine Equivalence Classes of Boolean Functions (2007.12308v2)

Published 24 Jul 2020 in math.CO, cs.IT, and math.IT

Abstract: Let $R(r,n)$ be the $r$th order Reed-Muller code of length $2n$. The affine linear group $\text{AGL}(n,\Bbb F_2)$ acts naturally on $R(r,n)$. We derive two formulas concerning the number of orbits of this action: (i) an explicit formula for the number of AGL orbits of $R(n,n)$, and (ii) an asymptotic formula for the number of AGL orbits of $R(n,n)/R(1,n)$. The number of AGL orbits of $R(n,n)$ has been numerically computed by several authors for $n\le 10$; result (i) is a theoretic solution to the question. Result (ii) answers a question by MacWilliams and Sloane.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube