Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Receding Horizon Control Based Online Motion Planning with Partially Infeasible LTL Specifications (2007.12123v5)

Published 23 Jul 2020 in cs.RO, math.LO, and math.OC

Abstract: This work considers online optimal motion planning of an autonomous agent subject to linear temporal logic (LTL) constraints. The environment is dynamic in the sense of containing mobile obstacles and time-varying areas of interest (i.e., time-varying reward and workspace properties) to be visited by the agent. Since user-specified tasks may not be fully realized (i.e., partially infeasible), this work considers hard and soft LTL constraints, where hard constraints enforce safety requirement (e.g. avoid obstacles) while soft constraints represent tasks that can be relaxed to not strictly follow user specifications. The motion planning of the agent is to generate policies, in decreasing order of priority, to 1) formally guarantee the satisfaction of safety constraints; 2) mostly satisfy soft constraints (i.e., minimize the violation cost if desired tasks are partially infeasible); and 3) optimize the objective of rewards collection (i.e., visiting dynamic areas of more interests). To achieve these objectives, a relaxed product automaton, which allows the agent to not strictly follow the desired LTL constraints, is constructed. A utility function is developed to quantify the differences between the revised and the desired motion plan, and the accumulated rewards are designed to bias the motion plan towards those areas of more interests. Receding horizon control is synthesized with an LTL formula to maximize the accumulated utilities over a finite horizon, while ensuring that safety constraints are fully satisfied and soft constraints are mostly satisfied. Simulation and experiment results are provided to demonstrate the effectiveness of the developed motion strategy.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com