Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 54 tok/s
Gemini 2.5 Flash 140 tok/s Pro
Kimi K2 208 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Leveraging Bottom-Up and Top-Down Attention for Few-Shot Object Detection (2007.12104v1)

Published 23 Jul 2020 in cs.CV

Abstract: Few-shot object detection aims at detecting objects with few annotated examples, which remains a challenging research problem yet to be explored. Recent studies have shown the effectiveness of self-learned top-down attention mechanisms in object detection and other vision tasks. The top-down attention, however, is less effective at improving the performance of few-shot detectors. Due to the insufficient training data, object detectors cannot effectively generate attention maps for few-shot examples. To improve the performance and interpretability of few-shot object detectors, we propose an attentive few-shot object detection network (AttFDNet) that takes the advantages of both top-down and bottom-up attention. Being task-agnostic, the bottom-up attention serves as a prior that helps detect and localize naturally salient objects. We further address specific challenges in few-shot object detection by introducing two novel loss terms and a hybrid few-shot learning strategy. Experimental results and visualization demonstrate the complementary nature of the two types of attention and their roles in few-shot object detection. Codes are available at https://github.com/chenxy99/AttFDNet.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.