The expressive power of kth-order invariant graph networks (2007.12035v1)
Abstract: The expressive power of graph neural network formalisms is commonly measured by their ability to distinguish graphs. For many formalisms, the k-dimensional Weisfeiler-Leman (k-WL) graph isomorphism test is used as a yardstick. In this paper we consider the expressive power of kth-order invariant (linear) graph networks (k-IGNs). It is known that k-IGNs are expressive enough to simulate k-WL. This means that for any two graphs that can be distinguished by k-WL, one can find a k-IGN which also distinguishes those graphs. The question remains whether k-IGNs can distinguish more graphs than k-WL. This was recently shown to be false for k=2. Here, we generalise this result to arbitrary k. In other words, we show that k-IGNs are bounded in expressive power by k-WL. This implies that k-IGNs and k-WL are equally powerful in distinguishing graphs.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.