Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Regularization of Building Boundaries in Satellite Images using Adversarial and Regularized Losses (2007.11840v1)

Published 23 Jul 2020 in eess.IV and cs.CV

Abstract: In this paper we present a method for building boundary refinement and regularization in satellite images using a fully convolutional neural network trained with a combination of adversarial and regularized losses. Compared to a pure Mask R-CNN model, the overall algorithm can achieve equivalent performance in terms of accuracy and completeness. However, unlike Mask R-CNN that produces irregular footprints, our framework generates regularized and visually pleasing building boundaries which are beneficial in many applications.

Citations (19)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com